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Preface

The 17 " international Mittweida Workshop on Computational Intelligence (MiWoCI) gathering
together more than 40 scientists from different universities including Bielefeld, Groningen, UAS
Mittweida, UAS Wiirzburg-Schweinfurt, UAS Zwickau, TU Freiberg and University Liibeck.
The workshop took place at a new universtity building in Werkbank 32 in Mittweida, a sustain-
able building designed for meetings and research exchange, and for all who could not attend
in person the workshop was hybrid. Thus, from 01.9 - 3.9.2025 the tradition of scientific pre-
sentations, vivid discussions, and exchange of novel ideas at the cutting edge of research was
continued. They were connected to diverse topics in computer science, life science, and machine
learning.

This report is a collection of abstracts and short contributions about the given presentations

and discussions, which cover theoretical aspects, applications, as well as strategic developments
in the fields.
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Psychological Experiments: Replacing human
participants by LLMs?77

Valerie Vaquet!, Sarah Schroder!, Thekla Morgenroth?, Ulrike Kuhl', and
Benjamin Paafien!

IBielefeld University, 2Purdue University

Abstract

LLMs are increasingly used to automate many tasks in different settings ranging from
software development, to content creation and education. They also play a considerable
role in research, for instance in scientific writing tasks, literature search, and data anno-
tation®.

Recently, there has also been work suggesting that one can replace human participants
in psychological studies by LLMs. Dillion et al. [2] focused on moral judgement tasks.
They considered 464 moral scenarios and compared the ratings obtained by GPT-3.5 to
human ones. Based on a high correlation between human and LLM outputs, they argue
for the potential to replace human participants by LLMs. Most recently, Binz et al. [1]
published the CENTAUR model, “a computational model that can predict and simulate
human behaviour in any experiment expressible in natural language”. CENTAUR builds
opon a Llama-3.1 70b LLM and is fine-tuned on a dataset containing about 10 million
human responses collected across 160 psychological experiments.

There also has been considerable criticism focusing on issues connected to biases, hal-
lucinations [4] and the LLMs’ inability to accurately represent human diversity [3]. Arging
against replacing human participants by LLMs, we rely to the foundational argument of
generalization in ML: ML models perform quite well on new tasks that are sufficiently
similar to the training data, e.g. experiments that were already conducted and are part
of the training corpus. However, there is no reason to believe that LLMs or other ML
models generalize to out-of-distribution data, e.g. interesting novel psychological experi-
ments. We showcase this by slightly rewording the moral judgement tasks used in [2] and
re-evaluating human responses and LLM outputs.

References

[1] Marcel Binz et al. “A foundation model to predict and capture human cogni-
tion”. en. In: Nature (July 2025). 1sSN: 0028-0836, 1476-4687. DOI: 10.1038/
s41586-025-09215-4. URL: https://www.nature.com/articles/s41586-
025-09215-4 (visited on 07/30/2025).

1(, and the review process). Let’s leave the discussion of whether this is good scientific practice for the coffee
break :-)
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[2] Danica Dillion et al. “Can AT language models replace human participants?” en.
In: Trends in Cognitive Sciences 27.7 (July 2023), pp. 597-600. 1SSN: 13646613.
DOI: 10.1016/j.tics.2023.04.008. URL: https://linkinghub.elsevier.
com/retrieve/pii/S1364661323000980 (visited on 07/30,/2025).

[3] Jacqueline Harding et al. “Al language models cannot replace human research
participants”. en. In: Al € SOCIETY 39.5 (Oct. 2024), pp. 2603-2605. 1SSN:
0951-5666, 1435-5655. DOI: 10.1007/s00146-023-01725-%. URL: https://
link.springer.com/10.1007/s00146-023-01725-x (visited on 07/31/2025).

[4] Luca Rossi, Katherine Harrison, and Irina Shklovski. “The Problems of LLM-
generated Data in Social Science Research”. en. In: Sociologica 18.2 (Oct.
2024), pp. 145-168. DOI: 10 .6092/ISSN . 1971 - 8853 /19576. URL: https :
//sociologica.unibo.it/article/view/19576 (visited on 07/31/2025).
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The Influence of Drift in a Mismatched Student-Teacher
Setting

Frederieke Richert, Otavio Citton, Michael Biehl

Bernoulli Institute for Mathematics, Computer Science and Artificial
Intelligence, University of Groningen, The Netherlands

Abstract

Despite the widespread usage of machine learning techniques and especially neural
networks, the inner workings of these machines are not yet fully understood. Statistical
physics has played an important role in the last decades in increasing the theoretical
understanding about the typical behavior of neural networks.

In previous works in the Intelligent Systems group Groningen, the focus was on distin-
guishing differences between different types of activation functions |1, 2| and techniques
were developed to analyse networks with arbitrary activation functions |3, 4].

We study a relatively simple network with only one hidden layer and fixed hidden-
to-output weights, the so called Soft Committee Machine (SCM). To control the training
task, we assume a second, similarly structured SCM. Thus, the task is given by this so
called teacher network, which the trainable student network endeavours to imitate.

Extending previous results on the influence of drift in student-teacher scenarios with
either ReLU or sigmoidal activation function [5], we analyse this setting in the mismatched
case, where the student and the teacher SCM have different activation functions. This
corresponds to a more realistic learning scenario and illuminates interesting dependencies
of learning on the activation functions, the drift and weight decay parameters.

References

[1] E. Oostwal, M. Straat, and M. Biehl, Physica A. Vol. 564, 125517 (2021)

[2] F. Richert, M. Straat, E.Oostwal, and M. Biehl, Proceedings ESANN 2023, p.435-440
(2023)

[3] O. Citton, F. Richert, M. Biehl, Proceedings ESANN 2024, p.437-442 (2024)
[4] O. Citton, F. Richert, M. Bichl, Physica A. Vol. 660, 130356 (2025)

[5] M. Straat, F. Abadi, Z. Kan, C. Gopfert, B. Hammer, M. Biehl, Neural Computing
and Applications 34 (1) 101-118 (2022)
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Three research directions for more interpretable
prototypes

Benjamin Paassen!

1Faculty of Technology, Bielefeld University

preprint as provided by the authors

One of the key arguments in favor of prototype-based models (namely learning vector quan-
tization or LVQ models) is their interpretability and explainability: Any classification decision
is made by assigning the label of the closest prototype. Hence, the decision can be explained
by inspecting the closest prototype; and the full model can be interpreted by inspecting the set
of prototypes and the metric used Nova and Estévez [2014], Kaden et al. [2022], Lisboa et al.
[2023].

More formally, let d : X x X — R™ be a metric over some input space X and let wy, ..., wg €
X be a set of K (for small K) prototypes with labels z,...,zx € {1,...,L}. Then, any data
point x € X is assigned the label

f(x) =2,  where k=arg mkin d(z, wy). (1)

Thus, the model is not only locally explainable, but globally. Even better: Not only the trained
model is nicely explainable, but the training is as well, essentially pulling prototypes to data
points of the same class and pushing them away from data points of different classes Nova and
Estévez [2014], Kaden et al. [2022].

Beyond these interpretability and explainability advantages, LVQ models also exhibit favor-
able computational efficiency with linear training times in stochastic gradient descent, constant-
time inference because any classification only requires K distance computations, as well as low
memory footprint because only K prototypes need to be stored. Recently, adversarial robust-
ness with respect to the metric d has also been achieved Saralajew et al. [2020]; and LVQ
models are easily adaptable to novel data types as long as an appropriate metric d can be
defined Paafen et al. [2018].

All these nice properties beg the question: Why are LVQ models not used more frequently?
A modest attempt at an answer has three parts. First, prototype models are, in fact, used
quite frequently, just not under the label LVQ but as prototype networks and related concepts
in few-shot learning and meta learning Snell et al. [2017]. Second, the metrics used in classic
LVQ models are mostly constrained to the Euclidean distance, general quadratic forms, and
cosine distances, which insufficiently address the complexities of commonly used data types,

10 Machine Learning Reports
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Figure 1: An illustration of adversarial attacks due to representation changes. As soon as
points in Euclidean space are pushed apart in the metric used for classification, opportunities
for adversarial attacks emerge.

especially images and text; instead, such data is more successfully addressed via representation
learning techniques involving multiple layers of neural networks, such as Radford et al. [2021],
Hu et al. [2024]. Third, the interpretability and explainability of prototype often breaks down
for typical real-world data sets. Consider the examples of images: even in the simple example
of the CIFARI10 data set, prototypes typically look like random pixel mush, complicating any
interpretation, and we need many of them to achieve reasonable accuracy, also complicating
interpretability; or the example of distance datasets, where the prototypes of a relational model
are given only in terms of Lagrange coefficients Hammer et al. [2014], Hofmann et al. [2014].
In such cases, we often refrain from interpreting the prototypes directly but move to exemplars
Hofmann et al. [2014] or the relevance matrix, instead Schneider et al. [2009], Lovdal and Biehl
[2024].

Therefore, we argue that more research is needed to make prototypes more interpretable.
In particular, we see three different research directions that may contribute to this overarching
goal.

1 From Metric Learning to Deep Representation Learning

A crucial limitation regarding the performance of LVQ models on image or text data so far
has been that the Euclidean distance, as a metric, does not conform to human intuitions of
similarity. To address this issue, metric learning has been proposed—but metric learning for
prototypes has so far mostly been limited to general quadratic forms Schneider et al. [2009]
or edit distances Paafsen et al. [2018], while most recent advances in contrastive learning and
representation learning with deep networks Hu et al. [2024] have not yet been translated to
the world of LVQ models. Technologically, developments like ProtoTorch Ravichandran [2020]
make it easy to integrate deep learning methods with prototype-based models. However, one
should also acknowledge that this research direction is fraught with other problems: If we
increase the representational power of our metric, such that it can bring data points together
that humans judge as similar (despite larger Euclidean distance) and pull data points apart
that humans judge as dissimilar (despite smaller Euclidean distance), our models will almost

Machine Learning Reports 11
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inevitably also loose interpretability in the computing process for the distance—and become
more susceptible to adversarial attacks Ilyas et al. [2019]. Consider the example in Figure 1:
We have two images from different classes in the training data that share a lot of similar pixels
(white and blue); hence, their Euclidean distance is relatively low. To classify these images
correctly, we need to learn a metric d that pulls these images apart despite their low Euclidean
distance. However, as soon as we do so, it is likely that we can find an adversarial, i.e. an
image with very low Euclidean distance to one of the training images but high d, such that it
is classified incorrectly.

Therefore, we will need to find new representation learning schemes that maintain robustness
guarantees Hammer et al. [2005], Saralajew et al. [2020] and “well-behavedness” even if we use
highly nonlinear transformations to achieve a better metric d. As a very first, simple starting
point, we could try to impose Lipschitz continuity conditions onto our metric d, in the sense
that there should exist some constant L, such that for any two points x, 2’ we have

d(z,2') < L+l — 2. (2)

If that is true, adversarial robustness with respect to d also translates to adversarial robustness
with respect to the Euclidean distance. More precisely, let’s assume the LVQ model guarantees
that for any point  from the training data, any point 2’ that would be classified differently is
at least € apart from x. Accordingly, the Lipschitz constraint ensures that ||z — 2| > £, thus
preventing adversarials with a Fuclidean distance smaller than that.

2 Median Learning Vector Quantization

Models become substantially more interpretable if the prototypes stem from the training data
set as one can directly inspect the prototypes. Such LVQ variants have been dubbed median
LVQ Nebel et al. [2015]. A core challenge in median LVQ is that we lose the ability to contin-
uously shift in the input space but, instead, we have to apply discrete optimization methods.
Nebel et al. [2015] pushed this forward with an EM approach, which has later been combined
with metric learning Paafsen et al. [2018]. But this discrete approach can also be found in the
set cover formulation of Bien and Tibshirani [2011].

As one exemplary idea in that direction: While choosing the optimal prototypes in median
LVQ is provably NP-hard, we can show that a restricted version of median LVQ can be phrased
as a mixed integer linear program (mILP) for which very efficient heuristic solvers exist Huangfu
and Hall [2018].

In particular, we will apply two simplifications. First, we replace the GLVQ loss by the hinge
loss [df —d; +~]; PaaRen [2019], where d; is the distance of data point i to the closest correct
prototype, d, is the distance to the closest incorrect prototype, and < is a hyperparameter
called margin, and we permit only one prototype per class. Now, let @ € {0,1}" be a binary
indicator variable, where o; = 1 if and only if data point i is selected as a prototype for class y;.
If we restrict our model to one prototype per class, we know that Zi:yi:z x; = 1 for all classes

(. Accordingly, the distance d;” can be expressed as d = x; - d; j, because exactly one

Jiyj =~
x; in this sum is one. d; is a bit more challenging to express. For this, we need to introduce
a slack variable d; , upper-bounded by the distance of data point ¢ to the prototypes with a

7 )
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different label:
dy <> wj-diy  Vie{l,...,N},{#y,.
Juy;=t
Further, we introduce a slack variable ¢; for each data point ¢ that is supposed to express the
hinge loss [d — d; + 7]+ and, thus, is lower-bounded by €; > d — d; + 7. Overall, we arrive
at the following mixed integer linear program:

N N

min Zei—{—)\-de (3)
i=1

#e{0,1}V &eRN d-€RN

such that  df = > ;- d; Vie{l,...,N}
JYi=VYi

dy <> xj-diy Vie{l,...,N},l#vy
Jiyy=l

& >df —d 47 Vie{l,...,N}

6 >0 Vie{l,...,N}

d =1 vie{l,...,L}

iy =l
Note that the first equality constraint is not explicitly enforced but is merely a definition. So, we
overall have an mILP with N - (L —1) inequality constraints for the d; variables, 2- N inequality
constraints for ¢; (or, rather, N constraints and N bounds), and L equality constraints to enforce
exactly one prototype per class. Also note that we introduce the regularization term X - d; to
encourage that each prototype is close to the median of its receptive field.

Even though we do not provide a formal proof at this point, the optimization will really
push ¢; to represent the hinge loss because the objective enforces ¢; to be as low as possible,
such that the corresponding inequalities become exact. By contrast, d, may be smaller than
the true distance to the closest negative prototype because it will only grow until the hinge loss
is zero—if that is possible. If that is not possible, d; does represent the distance to the closest
negative prototype.

First empirical experiments suggest that this mILP formulation is much slower than prior,
heuristic approaches to find good prototypes and may not necessarily improve accuracy, either.
As such, this formulation may rather be seen as a starting point for further exploration compared
to an actual proposal for a solution. Nonetheless, it shows that further conceptual improvements
are possible toward median LV(Q models, even though the idea of median LVQ is a decade old.

3 Fewer prototypes in tree-based models

If we need many prototypes to represent our classes, we reduce computational efficiency and
make it more difficult to interpret our model. Therefore, it would be beneficial to reduce the
number of prototypes needed to achieve good accuracy. One way is metric learning to achieve
metric spaces that pull all points in a class together such that a single prototype suffices Snell
et al. [2017]. An alternative route is to combine prototypes with other, similarly intuitive
decision structures.

Machine Learning Reports 13
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A first idea of our lab in that direction is the concept of prototype decision trees where each
decision node is a protoype-based model. The potential advantages are two-fold: First, decision
trees only establish new nodes (and therefore new prototypes) if the decision at a particular part
of the space is not clear, yet. In that sense they are parsimoneous in the number of prototypes.
Second, they solve a crucial problem of vanilla decision trees, namely that they need excessive
numbers of decision nodes for correlated features (where the decision plane should be oblique,
not aligned to an axis of the space) Yang et al. [2019].

However, first empirical experiments suggest that the idea is much harder to implement than
it may appear on first glance. Prototype decision trees may still overfit and the interpretability
problems of classic LVQ models are inherited by prototype decision trees. Hence, further
research is needed.

4 Conclusion

We present three ideas to make prototype models more interpretable—all challenging, but all
profiting from pairwise synergies. Better metrics will also enhance the accuracy and inter-
pretability of median models or prototype decision trees; median models will also make metric
learning more efficient and make prototype decision trees more interpretable; and median mod-
els will be much easier to train for one prototype per class, which is sufficient if we embed
them in prototype decision trees. However, these are not the only research directions possible.
Substantial success has also been achieved in making prototypes more flexible by treating them
as combinations of concepts Saralajew et al. [2019]. Further, the final proof of interpretability
lies in user studies: can users actually assess, predict, and utilize these prototype-based models
in real-world decision contexts Speith et al. [2024]|? Performing such studies more frequently
is, thus, another direction I recommend.
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The Effect of Existential Presuppositions on
Hallucinations in Large Language Models

Jonas Vaquet

Bielefeld University

Abstract

With the rapid proliferation of Large Language Models (LLMs), they are increasingly
used for information retrieval by end users. Internet search engines provide LLM-generated
summaries and users directly turn to LLM-based conversational agents for information
retrieval in order to save time and effort [1].

LLMs, however, fail to properly verbalize their uncertainty. This leads to a calibration
gap where humans overestimate the accuracy of LLM-generated responses. At the same
time, hallucinations where LLMs generate responses that contradict real-world facts are
a well-known problem. Their consequences can reach from misinformation to real-world
harm.

The main benefit of using LLMs for end users is that they can be interacted with using
natural language. In natural language preexisting knowledge, however, is often implicitly
encoded using so-called presuppositions [3]. End users can thus inadvertently inject their
believes into prompts meant for information retrieval. Presuppositions that imply the
existence of an entity are called existential presuppositions.

LLMs have been shown accommodate presuppositions in previous work [2]. If these
presuppositions are factually wrong, this mechanism can cause more hallucinations. In
this work, we aim to quantify the effect and explain the mechanism by which existential
presuppositions included in user prompts influence LLM responses.
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Fast Markov chain Monte Carlo for Bayesian Machine
Learning

Bjorn Sprungk

TU Bergakademie Freiberg

Abstract

In this talk we consider Markov chain Monte Carlo methods for computing the pre-
dictive distribution in Bayesian machine learning such as Bayesian neural networks or
Gaussian process classification [3]. In Bayesian machine learning the unknown hypothesis
or its parameters such as weights and biases are learned by conditioning a chosen prior
distribution for the unknowns given the training data. This results in a posterior distribu-
tion for the parameters which in practice can only be approximated, e.g., by Markov chain
Monte Carlo sampling. A common method to do so, particularly, for Gaussian priors, is
the elliptial slice sampler [1]. This method seems particularly suited for high-dimensional
settings such as Gaussian process classification. However, a convergence analysis was miss-
ing in the literature. In this talk, we present first results which guarantee an exponentially
fast convergence of the elliptical slice sampler [2] and comment on recent developments in
the field.
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Learning Partitions of Dynamical Systems
with Stability Guarantees

Lucas Schwarz and Florian Rohrbein

Chemnitz University of Technology

Abstract

Approximating the behaviour of dynamical systems through parametric functions fitted
on sampled data when no analytical expression is available constitutes a popular approach
in various fields such as control theory, computational neuroscience and robotics [1-3]. A
particular method is the partitioning of the state-space into compact subsets and subse-
quently learning multiple local linear dynamical systems which are combined to model the
global non-linear system behaviour. This strategy has been popular in the field of robotics
to generate movement policies from kinesthetically demonstrated trajectories [4-6]. How-
ever, topological aspects of the available data have been sparsely considered in this do-
main [7]. In this contribution, we propose to generate a learned explicit topological rep-
resentation of the underlying system trajectory data using prototypes and to incorporate
this topology into the generation of provably stable locally linear dynamical systems with
physically consistent mode transitions. We demonstrate the validity of our approach on a
synthetic benchmark dataset and on a real robot experiment.
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Can Causal Models Learn Robust Representations
from Reservoir State Dynamics?

Gengcheng Lyu

Technical University of Applied Sciences Wiirzburg-Schweinfurt, Germany

Abstract

Reservoir Computing, particularly Echo State Networks [1], excels at modeling complex
temporal dynamics but suffers from limited interpretability and poor out-of-distribution
generalization. Its rich, high-dimensional reservoir states are complex nonlinear embed-
dings of the input history, yet their internal structure remains largely opaque. This re-
search proposes a novel approach to enhance the robustness and interpretability of RC by
leveraging Causal Representation Learning [2| techniques on the reservoir state dynamics
themselves.
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GMLVQ for Tracking of Neurodegenerative Disease
Progression in Prodromal Stages

Sofie Lovdal' 2, Michael Biehl', and the REMPET consortium”

'Bernoulli Institute for Mathematics, Computer Science and Artificial
Intelligence, Nijenborgh 9, Groningen, 9747AG, Netherlands
2University Medical Center Groningen, Department of Nuclear Medicine and
Molecular Imaging, Hanzeplein 1, Groningen, 9713GZ, Netherlands

Abstract

Neuroimaging with [!®F|Fluorodeoxyglucose Positron Emission Tomography ([!*F|FDG
PET) models the glucose metabolism of the brain, and is a biomarker of neurodegener-
ation by reflecting the functional state of neurons. Isolated REM-sleep behaviour disor-
der (iRBD) is a strong indicator of prodromal Parkinson’s disease (PD), dementia with
Lewy bodies (DLB) or multiple system atrophy (MSA). Interpretable machine learning
through Generalized Matrix Learning Vector Quantization (GMLVQ) offers a way to ro-
bustly model disease progression in this setting [1]. We considered [**F]FDG PET scans of
n = 49 iRBD patients, having undergone imaging two or three times with several years in
between. We extracted feature vectors from the images using principal component analy-
sis, whereafter a GMLVQ model was trained to classify HC, PD, DLB and MSA based on
a set of training patients. Scanner effects in the data space were harmonized with Iterated
Relevance Matrix Analysis [2]. We grouped the iRBD patients according to their clinical
status, projected them into the trained GMLVQ space, and evaluated their trajectory over
time. Subjects who converted during follow-up showed a steady and progressive trajectory
from healthy towards the PD and DLB decision space over time. No difference between
PD and DLB converters could be observed. A stable metabolic profile in HC space was
associated with low risk for short-term conversion.
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Feature Relevance and Robustness in
Biologically-Informed Classification Learning

Julius Voigt, Marika Kaden, and Thomas Villmann

SICIM, University of Applied Sciences Mittweida, Germany

Microgravity experiments on living cells are very complex and costly. Consequently, Machine
Learning practitioners have access to only a small number of data points, which are, however,
very high-dimensional. To make matters worse, the inputs are very information-sparse, as they
contain many zeros. This almost inevitably leads to overfitting and unstable learning behaviour.
Attempting to remedy this, one can reduce the complexity of the model by cutting down on
parameters to be learned. This can be achieved by incorporating biological prior knowledge into
the model architecture, and further reduced by an informed reduction of the inputs through
analysis of feature relevance.
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The Importance of Relevance:
Combining Boruta with GMLVQ)

Roland J. Veen?, Michael Biehl!

1- Univ. of Groningen, Bernoulli Institute for Mathematics, Computer Science
and Artificial Intelligence, Groningen, The Netherlands

2- Medical Research Council Laboratory of Medical Sciences (MRC LMS)
London, United Kingdom

Abstract

Introduction In many areas, but notably medicine, datasets can contain many features,
not all of them important or useful. The Boruta algorithm |1, 2] was created as an extension
of Random Forests [3] to select the truly important features of a dataset. Random forests
calculate the importance score for each feature, but this is not enough to also identify the
features that become significantly important in interaction with other features. Boruta,
as the spirit of the forest, solves this by adding even more randomness. All features are
copied and permuted across all objects to serve as shadow features. Thus, these are not
correlated with the decision problem. Subsequently, only features that are more important
than their shadow copy can be considered important.

Generalized Matrix Learning Vector Quantisation (GMLVQ), [4], is a classification
algorithm that, through the diagonal of its relevance matrix, gives a relevance for each
feature. By using the relevances as importances, we can substitute Random Forests.

Methods We re-implemented the Boruta package, which was originally coded in R, later in
Python, in MATLAB. Our implementation offers a choice of using Random Forests through
the TreeBagger of the Statistics and Machine Learning Toolbox [5], or our implementation
of GMLVQ [6]. We applied this method to benchmark and real-world medical data sets.

Results Some modifications were needed to go from relevance to importance, since the
sum of the relevances is always normalized to 1. By comparing a feature’s relevance only to
its shadow feature, as done in |7], and delayed scoring by hit counting, we can successfully
integrate GMLVQ as an importance provider for Boruta.

Conclusion GMLVQ can serve as a robust alternative to Random Forests for feature
selection. GMLVQ is more computationally expensive than Random Forests, but can
achieve comparable results with minor parameter tuning while preserving the robustness
of GMLVQ. Further work would include proper cross-validation of the performance and
the extension of the GMLVQ importance provider with feature bagging and statistical
significance tests. A public release of the MATLAB Boruta toolbox is planned.
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Some Insights on Multi-Perspective Learning with
Indefinite Similarity Measures

Peter Maria Preinesberger

Faculty of Computer Science and Business Information Systems
Technical University of Applied Sciences Wiirzburg-Schweinfurt
peter.preinesberger@study.thws.de

Abstract

In data-scarce scenarios, supervised learning algorithms based on similarity measures
play a pivotal role at integrating available domain expert knowledge for the prediction
task [6, 7]. Unfortunately, many of these similarity measures violate the properties of
valid dot products in one way or the other, obliterating theoretical properties of many
methods [6], and requiring strategies for treating indefinite kernels [3]. Another dimension
of difficulty is the fact that often, multiple similarity measures capture different aspects
of the task, necessitating their fusion with Multiple Kernel Learning approaches |2, 1.
At the intersection of learning with indefinite kernels and Multiple Kernel Learning lies a
bouquet of methods designed to deal with some or all of these complications [4, 5, 6, 3, 1],
all with different principal approaches at tackling the problem. The presentation focuses
on discussing the available approaches, highlighting differences as well as common aspects
and pointing out problems and future research directions.
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Metric Learning for k-NN

Marc Strickert

Justus Liebig University Gieken

Abstract

Metric learning for k-nearest neighbor classification is used to enhance the classification
performance in terms of optimum confusion matrix properties, such as the predictive per-
formance (F-score). In order to achieve that goal, the common discrete error counting is re-
placed by a mechanism based on continuous soft-ranked distances for class-(mis-)matching
nearest neighbors. The derivative of the continuous-valued approximated F-score function
w.r.t. adaptive metric parameters is used to improve the F-score by quasi-Newton opti-
mization. For Mahalanobis type metrics, the result can be used for affine transformation
of the original feature space. Hence, the proposed method provides an optimum data
transformation for k-NN with confusion matrix criteria.

1 Introduction

Feature space transformation can be used to enhance the "clumping" of labeled point
clouds in terms of better clustering and classification. By projection on only the "good"
dimension, this is obvious for data with one perfectly separating data feature and another
with uniform noise. Less extreme data configurations can also profit.

The original k-NN classifier does not require a training phase and it is a very easily
interpretable model by relating to the class majority of k-nearest data points of a given
pattern. Metric learning keeps the interpretability and may even lead to further simplifi-
cations of data configurations in low-dimensional projections. k-NN performance may not
compete with state-of-the-art classifiers, but the proposed model allows for easy exchange
of classifier behavior regarding versatile performance measures based on the class confusion
matrix [1].

2 Methodology

The class confusion matrix with predicted conditions in columns and actual conditions in
rows is a powerful tool to express many interesting properties of a classifier. If conditions
(class labels) are called positive (P) and negative (N), the intersection cardinality of actual
and predicted positives (hits) is the number of so called true positives (TP). Likewise,
the true negatives (TN) reflect correct rejections. An actual true positive being predicted
negative, a miss, is a false negative (FN), while the actual negative being predicted positive
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is a false positive (FP) aka false alarm. Using these matrix elements, for example, the well-
known accuracy is just expressed as ACC = (T'P + TN)/N, where TP = #(TP) is the
number of true positives, TN = #(TN), and N is the number of classified data points.
Other common measures are the False Discovery Rate and the Jaccard index. Here the
focus is put on the F1-Score [2] which is the harmonic mean of precision TP/(TP + FP)
and recall TP/(T'P + FN), i.e.:

B 2.TP
2. TP+ FP+FN’

F (1)

Measures related to the confusion matrix involve the integer counting operator #(-)
of class matches and class mismatches and thus impose challenges on optimization proce-
dures. Especially coordinate transformations based on continuous parameters are difficult
to tune with discrete jumps in the Fj-response and partially flat cost function domains.
High-performance optimization utilizing gradients of the cost function requires continuous
formulations along the whole chain of nested computations. Besides counting another dis-
crete entity, the concept of "nearest neighbors" in feature space, has to be replaced by soft
ranking for k-NN classification. The metric-optimal k-NN classifier is implemented using
these steps:

1. Compute N x N distance matrix D)){ of M-dimensional data X projected by M X ¢
parameter matrix A to an g-dimensional (sub-)space.

2. Soft ranking of the distance matrix D¥.

3. Sigmoidal transformation of soft ranks: sgd;, ,(r) = 1—(1 +e~Ur=k=1/2y=1 which for
t>4is =1 for r <k and = 0 for > k, where k refers to k-NN neighborhood size.
The "logistic" result indicates k-neighborhood (specifically, soft neighborliness).

4. Conditioned summation of these indices for each reference data point: if the reference
data point belongs to class P and the class of the comparison point is also P the
summation of its neighborliness index contributes to TP. Two points of class N sum
up TN. A reference point class P with a comparison point class N leads to summation
of FN, and vice versa for FP.

5. For each point each of its four above sums s is squashed sigmoidal by —sgdy, /5 ,(s) with
turning point at k£/2 and typical squashing values of ¢ = 100. This leads to exclusive
contribution of ~ 1 to either TP, FN, FP, or TN, i.e. to specific point characterization
with respect to the type of class match or mismatch in its neighborhood context.

6. Based on summation of these ratings for all points create the total soft confusion
matrix (L5 LX) as soft counts of TP, TN, FP, and FN.

7. Calculate the soft F1-Score using Eqn. 1 and take the negative as cost function value.

For two input vectors x* and x/ € X being column vectors their adaptive distance is
defined as

(DY = \Jixi —x) A (x = %)) with A=Xx-A. @

This expression looks like the Mahalanobis distance. Since the square roTot does not affect
the nearest neighbor configurations, this operation can be omitted and X - be considered
as data projection for which the pairwise squared Euclidean distance can be used.
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Instead of utilizing a sorting operation, for nearest neighbor identification, the ranking
of distances in column vectors u of D))g can be alternatively achieved by summing up rows
of the indicator matrix R:

Zij\il R(ul,ui) R(ul,ul) . R(ul,uN)
rk(u)= . for R(u) = e . (3)
Zij\il R(uN,ui) R(uN,ul) R(U,N,U,N)
For the Heaviside step function R(uy,w;) = H(up — w;), providing zero for negative

arguments and else one, correct ranks are obtained for vector elements w; in the absence
of ties. Using the standard deviation oy,

Ou = <ﬁ : i(uz - Mu)2>1/2 (4)
i=1

the step function H (up — u;) can be replaced by a differentiable sigmoid

1 up — U 1 1 1
—eodkl L el B} Z = -
R(uwp, w) = sgd! + 3 Sgd”( O > R R P T e (5)

with mid-tied ranks being approximated for kK — oco. In practice, 5 < k < 100 is numer-
ically adequate. Since each column distance matrix triggers an N x N indicator matrix,
the overall computational costs are O(N?3); this is certainly huge, considering that only
k x N ranks are effectively needed for the nearest neighbors.

Optimization is done with the Broyden-Fletcher-Goldfarb-Shanno BFGS-algorithm [3].
The derivatives of the nested cost function (see seven steps above) employed therein as
product of several Jacobian matrices would exceed the scope of the present text. Interested
readers can refer to previous work [4] and to the MATLAB/GNU-Octave code [5|. Vali-
dations were carried out by numeric gradient approximations using DERIVESTsuite [6].

3 Matrix Initialization

The simplified expression " - A - @ in Eqn. 2 describes the mixing of the k-th and m-th
attribute of @ by the matrix components (A)g,,. The identity matrix A = E implements
the Euclidean norm of @ with independent attribute contributions, while A = 3 - (E + 1)
leads to equal contributions of all attribute pairs.

Without prior knowledge both choices are good options for starting the matrix adap-
tation in an unbiased way. Yet, A gets adapted, not A, which, leads to low ranks of
A=X-X and inability to express the identity matrix. This discrepancy can be mini-
mized by an optimized initialization matrix, where gradient descent is used on an initially
random matrix Ag with the cost function

1 2
S:H)\O-AS—2~(E+1) (6)
F
Therein, the squared Frobenius norm | - || is used to express a minimum least square

approach for optimizing the initial matrix elements. The converged matrix is used to
initialize A = Ag for metric adaptation. This way the rank mismatch is distributed equally
over all data attributes and, consequently, the sum of all mixing coefficients per attribute.
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4 Matrix Interpretation

For the interpretation of the finally obtained parameter matrix A it is more natural to look
at the mixing matrix elements in A = X - AT Basically, large absolute values |A;;| denote
"important" contributions of attribute pairs 4, j to the given association task. Since the
covariance values of the attributes affect the magnitude of the mixing factors, a rescaled
mixing matrix without covariance structure is obtained by inserting K into the central
expression of Eqn. 2 to 7-[K - (A-AT)- K-z, where K- K™ = cov(X), i.e. K = cov(X)!/2.
Equivalently, cov(X)l/ 2 can be multiplied to X prior to calculating A.

Alternatively, the influence of independent attribute variances, disregarding further
covariance structure, can be removed by multiplying the k-th row of A by the standard
deviation of the k-th data attribute prior to calculating A.

5 Experiments

5.1 Toy Example

First, an artificial dataset is generated with the following properties: two classes in five
normal distributed data clusters of 7, 10, 9, 4, and 12 points around the coordinates
(-1,0),(1,-1),(0,0),(1,1),(2,—1) with class labels P, P, N, N, N, respectively. Three
more normal distributed attributes are added to create a 5-dimensional dataset of which
the first two are meaningful. The cluster configuration features an XOR-like arrangement
for which a linear class separation is impossible. 3-NN is employed.

The initial configuration, a simple projection to the X-Y-plane, and a typical optimiza-
tion result are shown in figure 1. The inset whitened parameter matrix A- A" highlights the
first two attributes as important, which is in accordance with the original dataset design.
The top-left 2x2 matrix elements indicate not only original relevances, though, but also a
rotation of the first two dimensions by about 45° (plus meaningless horizontal flip) that
allows for a perfectly class-separating projection onto a single axis; thereby, some useful
features of noise dimensions are utilized as well, revealed as weak mosaic pattern of the
first two columns and rows.
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Figure 1: Left: Toy example, generating first two dimensions. Center: random

projection. Right: optimized projection subspace with the final parameter matrix
A = X- X" as inset with nothing hidden behind.
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Figure 2: Left: Tecator training data projection by initial A. Center: final param-
eter matrix A = X - A" with 100 dimensions. Right: projection of training data
(filled circles) and test data (open circles) by final A.

5.2 Tecator

The Tecator spectral data set is taken from the UCI
repository of machine learning. It contains 215 sam-
ples of 100-dimensional infrared absorbance spectra
recorded on a Tecator Infratec Food and Feed Ana-
lyzer working in the wavelength range 850-1050nm by
the Near Infrared Transmission (NIT) principle. 138
analysed meat samples have a low (red label P) fat and
77 high (blue label N) fat content for being classified
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based on their spectra, displayed in the right figure.
Low fat content is reflected by red dashed lines, high
fat content by blue solid lines. For illustration pur-
poses, 13 P-samples and 100 N-samples were used for
metric-tweaking a 5-NN classifier in 2 dimensions.

Figure 2 show the projection results. Configuration for initial A is show in the left, the
optimized metric A = A-A" in the center and the data projection by the final X in the right
panel. The training confusion matrix for an ordinary (discrete) k-NN classifier applied to
the transformed 2D-data space matrix is (103 0 ) This corresponds to a perfect Fl-score
of 1 and its soft cost function counterpart of —0.9999. For the test data (open circles) the
confusion matrix (633 315) yields the accuracy value of 0.961 and an F1-score of 0.969. The
trained metric highlights channel numbers around 40 as important, corresponding to the

"bump" of the blue spectral curves.

5.3 Ring Classification

Particle identification is one of the ultimate goals in high-energy physics and detector
design. Many methods use indirect phenomena such as the Cherenkov effect: charged par-
ticles in transparent media (such as gas, aerogel or fused silica) faster than the light prop-
agation therein create a cone-like wave front with characteristic opening angle (cf. sonic
boom). Usually, only few light photons (=100) are created. Quantum efficiency leaves
sparse elliptic patterns on a matrix of single photon detectors with around 7-50 dots to
be used for ring finding [7|. The ring-imaging Cherenkov detector (RICH) for compressed
baryonic matter (CBM), currently being developed at the Universities of Gieften and Wup-
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Initial Config. of Circle Identification Dataseet (kendall-based MDS) as-if z-score matrix Circle Identification Dataseet (kendall-based MDS)
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Figure 3: Left: Circle training data projection by initial A. Center: final parameter
matrix A = X- A" with 11 dimensions. Right: projection of training data by Agpal-

pertal, highlights a sophisticated simulation and particle detection analysis pipeline. An
annotated ring dataset with 6 - 10° 11-dimensional feature vectors is available. Besides
intuitive data features like "radius" and "center coordinate", less intuitive values like el-
lipse fitting parameters are included to predict whether a point configuration is part of a
particle-induced ring structure. 5-NN with 8-dimensional subspace projection is used.

Figure 3 show the projection results. Configuration of training data projected by
initial A is show in the left panel as neighborhood-preserving 2D-embedding by correlation-
based multidimensional scaling using Kendall correlation (cbMDS,[4]). The optimized
parameter matrix in the center indicates that only two out of eleven features are relevant
for k-NN classification. Since implicit whitening is used, this specific attribute emphasis is
not related to scale. The 2D-cbMDS embedding of final projection of training data in the
right shows how the initial central density and class confusion is counteracted. Note that
c¢bMDS is much better in preserving data neighborhood than PCA, but the true clustering
is only found in the 8-dimensional projection subspace. Thus, false data overlaps and false
separations might still be displayed.

The metric learning was based on only 120 randomly drawn samples (0.2 %o of the
data). The initial accuracy of 0.767 and Fl-score of 0.788 increases to 0.942 and 0.945,
respectively. However the test set reaches values of only 0.690 and 0.707, respectively, while
boosted decision tree reaches 0.79 for both values. Test values so much lower than for the
training data indicate that the random sub-sampling destroyed characteristic neighborhood
configurations. Without further data "summarization" such as vector quantization, this is
a general limitation of the proposed method: on the one hand, a small number of training
data suffices to characterize a global feature space transformation; on the other hand,
random sampling might not represent data structure and outliers well enough. And, as
expected, the proposed data projection method cannot compete with modern classifiers.

6 Considerations and Conclusions

The inherently discrete task of error counting in nearest neighbor configurations was ap-
proximated by nested soft formulations based on the sigmoid ("logistic") function. Like in
artificial neural network designs, a cost function gradient was used to optimize the desired
parameters, here, the linear projection parameters of the feature space in order to enhance
the clustering of class-consistent nearest neighbors.
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To get things working, double precision floating point numbers are recommended, be-
cause of the small but necessary gradients of sigmoids. Due to accuracy problems and
also because of time demands a numeric approximation of the gradient is no valid option
for the described optimization task. Analytic gradient calculations impose some memory
limitations though: the largest Jacobian matrix for the soft ranking matrix requires O(NN?3)
bytes which adds up to about 8 gigabytes in double floating point representation for only
1000 data points — and this is only one factor in the total cost function derivative. Also,
even on modern computers such matrix multiplications take some time.

The optimization result clearly differs from linear discriminant analysis or from learn-
ing vector quantization. It shares their idea of simplicity though, because linear data
projections and nearest neighbors allow for intuitive model interpretation. Also, the use
of cost function with whatever differentiable can be computed from the values of the con-
fusion matrix, such as accuracy and F'l-score, is a very appealing property of the proposed
method.
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Fairness in the Flow - Building Better Benchmarks for
Fair Stream Learning

Kathrin Lammers

Bielefeld University

31.07.2025

Abstract

When machine learning algorithms make decisions about human beings, such as when
they are used for pre-selecting job applications or assessing risk of fraud in social security
administration, fairness is a crucial aspect that demands consideration [5]. The EU Al
Act requires that algorithmic decision-making be free from discrimination and unfair biases
[1], for example. This does not only hold true for the standard batch set-up of machine
learning, but also and especially when working with non-stationary data streams.

Fairness in stream learning, however, is currently an under-explored topic. While
multiple algorithms have been proposed in recent years, some claiming to address issues
of fairness, concept drift, and class imbalance simultaneously, their evaluation is currently
somewhat limited due to a lack of suitable benchmark data streams [4] and a focus on
individual fairness metrics, which were also directly optimized during training.

Our research tries to address these issues by proposing a novel framework for gener-
ating suitable benchmark streams based on currently used, real-world fairness benchmark
datasets. To this end, we first extract the causal relations and feature codependencies from
the original data by learning its Bayesian network. In an additional step, this Bayesian
network is then manipulated to introduce concept drift - both with and without directly
targeting fairness-relevant connections between features. Both specific biases and class
imbalance can be either introduced or potentially mitigated during this step, which allows
for the creation of realistic biased and streaming data to be used as benchmarks when
evaluating fair stream learning classifiers.

Additionally, we provide a structured overview of the currently available fair stream-
learning algorithms, amongst others, 2FAHT [6], FABBOO [2]|, and CFSMOTE [3]. We
briefly characterize their core mechanisms - such as base models, addressed notions of
fairness, and stage of fairness-related interventions (i.e., pre-, in-, or post-processing), and
whether they are suitable for imbalanced data.

Finally, we generate a few example streams using this method - based on the Adult
and Portuguese Student datasets [4] - and employ them to evaluate a select number of
state-of-the-art fairness-aware stream learning algorithms on five key fairness metrics to
investigate their performance and potential fairness trade-offs.
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There’s a Bias in There

Marika Kaden, Ronny Schubert, Julius Voigt, Lynn Reuss, Alexander
Engelsberger, Sofie Lovdal, Elina L. van den Brandhof, Michael Biehl, Thomas

Villmann

SICIM, University of Applied Sciences Mittweida, Germany

Fairness in machine learning classification is a critical research area. Biased training data can
lead to discriminatory outcomes. In the talk, we present a workflow for detecting and mitigating
data bias using the interpretable, shallow machine learning model: Generalized Learning Vector
Quantization (GLVQ). We use the latest extension of the Matrix GLVQ), the Iterated Relevance
Matrix Analysis, to mitigate the influence of bias in the data for classification. We demonstrate
the effectiveness of this approach in some examples, showing how the workflow can be used to
detect and reduce bias, promoting fairer decision-making.
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Partially Interpretable Embeddings enable Fairness
through Awareness

Sarah Schroder

Bielefeld University

Abstract

Large language models are widely used in modern Al applications, yet concerns about
fairness and bias persist. Recently, several works utilize concept erasure to mitigate bias,
where sensitive attributes are entirely scrubbed from the language model or its represen-
tations to achieve fairness [1, 2, 3]. While there might exist cases where this improves
fairness with a performance tradeoff, other works discussed conceptual issues like concept
entanglement [4] or how blindness to sensitive attributes can actively harm the groups
that were supposed to be protected from algorithmic bias [5].

Contrary to these approaches, we aim to enhance fairness through awareness of sensitive
attributes. Instead of removing them, we investigate methods to identify such sensitive
concepts in embeddings of large language models. These concepts are incorporated into
a learning pipeline, where we leverage LLMs as language preprocessors, transform their
embeddings into a partially interpretable feature space, where sensitive attributes are
encoded by specific features, and finally stack a task specific model on top.

The premise is to actively use the sensitive attributes to (i) detect biases and investigate
sources for biases (e.g. feature interactions, stereotypes), (ii) mitigate those biases under
task-specific requirements and (iii) explain model decisions while highlighting how sensitive
attributes are used.

Building upon [6], we investigate how sensitive attributes can be reliable predicted,
considering challenges such as data availability and underrepresented groups. Furthermore,
we demonstrate how the pipeline can be used to discover and mitigate bias in real world
datasets.
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Drift Explanations for System Monitoring:
From Descriptive to Causal

Fabian Hinder

Faculty of Technology, Bielefeld University

Abstract

Real-world environments — whether industrial manufacturing, critical infrastructure,
or online services — are anything but static. Here, the data-generating process tends to
constantly evolve and change over time, a phenomenon known as concept drift (or drift,
for short). Most commonly, drift is studied in the context of learning models, where it
degrades performance over time. While there is a large body of literature on detecting
and adapting to drift [1], the more human-centered question of what ezxactly is changing,
and why? is usually left unanswered.

Drift explanations [2] aim to fill this gap by describing the often high-dimensional distri-
butional changes in a human-understandable fashion. This way, drift explanations provide
supporting information for model maintenance, system supervision, and monitoring even
outside the learning domain.

In our recent work [3], we integrated drift explanation with computational causality [4].
By moving beyond purely descriptive explanations to causal ones, we gain explanations
that are not only interpretable but actionable by pointing to interventions that mitigate
the drift — guiding understanding or even uncovering upstream faults in physical systems.
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On Competitive Networks

Ronny Schubert
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Germany
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Abstract

Competitive networks have been investigated at least since the 1970’s and are tightly
linked to the origins of mathematical formulations of neural networks [RZ85|. The neurons
of such a network inhibit the activity of entities within their level or layer which creates
a competition and gives this kind of network its name. The biological paragon for the
design and dynamic are synaptic inhibition and the presence of interneurons, which are
then modeled either as lateral connections or mathematical interneurons [KK94]. In a
more recent context, biological inhibition has been studied more extensively and research
suggests, that such phenomenons play a key role in homeostatic plasticity and learning
regulation [Bar21; GK25]. An example of a formal realization are Winner-takes-All (WTA)
networks, e.g., [MEA88; KK94|, which, due to their formulation and recurrent nature, are
in relation to Hopfield networks. Another example are ART networks based on Adaptive
Resonance Theory |Gro76a; Gro76b|. In this regard, we will elaborate in more depth about
these networks and the potential when considering other networks in the perspective of
competitive networks.
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Dynamic Mode Decomposition meets
Prototype-based Learning

Janis Norden

Bernoulli Institute for Mathematics, Computer Science and Artificial
Intelligence, University of Groningen, The Netherlands

Abstract

Dynamic Mode Decomposition (DMD) is a tool to analyse multi-variate time series
data. Originally developed in the fluid dynamics community, it was designed to extract
physically meaningful flow patterns from experiment and simulation data [3, 4]. Outside
of fluid dynamics, DMD has been a great success too: since its conception in 2008, DMD
has been applied to problems ranging from neuroscience all the way to oceanography and
robotics, to only name a few [1]. In principle, DMD is an unsupervised technique. However,
supervised DMD 2| and discriminant DMD |5] are two recent variants which incorporate
label information and have shown great promise to extract class-specific patterns, which
may be used in subsequent classification tasks. In this talk, I will briefly introduce the
basics of DMD, supervised DMD and discriminant DMD. Then, taking inspiration from
these two supervised methods, I will outline an approach that brings together prototype-
based learning and DMD, which may be able to alleviate some of the limitations inherent
to supervised DMD and discriminant DMD.
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Good by Default? Generalization in Highly
Over-Parameterized Neural Networks

Thomas Martinetz

University of Liibeck

May 25, 2025

Abstract

Modern deep neural networks are often highly over-parameterized, containing many
more parameters than available training samples. Surprisingly, even in this regime, such
models tend to generalize well, achieving low test errors despite being trained to zero
training loss and without explicit regularization. This behavior contradicts traditional
expectations from statistical learning theory, which warn against overfitting in these sit-
uations. While previous explanations focused on implicit reqularization effects (e.g., from
stochastic gradient descent), we study an alternative hypothesis: good generalization arises
because bad solutions become intrinsically rare in the solution space [1].

Main result

We show that under certain conditions, the fraction of global minima with poor general-
ization (that is, large true error) among all zero-training-error solutions vanishes exponen-
tially with the number of training samples n. This offers an alternative perspective: even
without regularization, over-parameterized models are likely to land on a good solution,
simply because bad ones are scarce.

We look at classification settings. Classifiers h from an hypothesis set H are evaluated
based on their true error E(h) and empirical error Es(h).

o H(S) C H: Subset of classifiers achieving Eg(h) = 0 on training set S.
o H.(S) C H(S): Subset of H(S) with E(h) > Empin + ¢ (bad solutions).

e D(E): Density of classifiers (DOC), i.e., the distribution of true errors over the
hypothesis space.

Under certain conditions, the expected fraction of “bad” zero training error solutions within
the zero training error solution set decays exponentially:
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This bound depends on the shape of D(E), not on the model size or parameter count.
ge/2 denotes the overall fraction of good solutions within the hypotheses set.

Empirical confirmations

The theoretical results are validated by several experiments:

1. Synthetic Data: Two overlapping Gaussian distributions in 10-dimensional space
are classified using neural networks with 120 and 1,200 weight parameters. Despite a
ten-fold difference in parameter count, the corresponding Density of Classifiers D(FE)
are remarkably similar. As predicted by the theory, the proportion of bad solutions
decreases at nearly identical rates as the number of training samples n increases.
Moreover, the empirically observed mean true errors closely match the theoretically
derived values.

2. MNIST (Digits 1 vs. 2): Even for a network with 7,860 weights, bad solutions become
rare with just a few dozen training samples. Once again, the empirically observed
mean true errors align closely with the theoretical predictions.

3. VGG19 and ResNetl8 on Caltech101: Randomly sampled zero-training-error solu-
tions of VGG19 (140M parameters) and ResNet18 (11M) begin to generalize with
as few as 10 to 20 training examples per class. Remarkably, VGG19 demonstrates
better generalization despite its significantly larger size.

In all the experiments, the theoretical bounds match closely with empirical measure-
ments. The shape of D(FE) determines how likely a bad solution is.

Conclusion

The results challenge the conventional view that generalization requires explicit or implicit
regularization. Instead, it argues that in over-parameterized settings, bad solutions are
statistically rare. As a result:

e The geometry of the solution space, as captured by D(FE), plays a crucial role.

e Over-parameterization may help generalization by increasing the proportion of good
solutions.

e Stochastic gradient descent does not need a strong bias towards good solutions if bad
ones are rare to begin with.

These insights may open new directions for the theoretical understanding of deep learning
and encourages further investigation into what structural properties of network models
and data lead to favorable D(E) distributions.
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feed-forward neural networks
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Abstract

Neural Network (NN) architectures are fundamental pieces in the ongoing Artificial
Intelligence (AI) revolution and, despite the huge advancements in the realm of applica-
tions, the theoretical understanding behind these models lags behind. Here we present
our work that tries to shed some light on the behavior of over-parameterized shallow feed
forward neural networks using techniques borrowed from Statistical Mechanics [1].

We consider a special type of two-layer NN known as Soft Committee Machines (SCM)
which allows us to obtain analytical results for the equilibrium distribution over the pa-
rameter space after training for a long time |2, 3|. By considering a teacher network
responsible for correct output of the examples, we are able to define a measure of the de-
gree of over-parameterization and analyze how it impacts the performance of the student
network. Moreover, our results hold for any activation function|4], allowing us to compare
how different functions perform in this over-parameterized scenario.
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Analysing the Stability of Feature Importance

S. Panda, M. Kaden, M. Karimi, and T. Villmann

SICIM, University of Applied Sciences Mittweida, Germany

Learning Vector Quantisation (LVQ) is an interpretable classification method. Despite
being a relatively simple, shallow approach, LVQ often achieves performance comparable to
that of more complex deep learning models. While many papers have demonstrated that
GLVQ provides robust classification, this cannot be transferred to the interpretation of feature
importance. We demonstrate through a number of examples that explanations derived from
an LVQ model are often specific to that particular model and do not generalise well. This
is a crucial consideration when using cross-validation to assess generalisation ability, as the
resulting interpretations may not be universally valid.
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Counterfactuals in Generalized Learning Vector
Quantization

Thomas Villmann

SICIM, University of Applied Sciences Mittweida, Germany

Counterfactual explanations are valuable for interpreting machine learning classifiers. While
often requiring constrained optimization, we demonstrate that prototype-based classifiers allow
for the analytical determination of counterfactuals. This is possible when nearest prototype
classification and counterfactual distance are evaluated using norms induced by an inner prod-
uct. Our approach avoids optimization, offering a more efficient solution.
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It Al-n’t what you think — Let’s drop the term*

Michael Biehl

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence

University of Groningen, Groningen, The Netherlands

Abstract

In this short rant I argue that we, being serious machine learning re-
searchers and data scientists, should avoid the term Artificial Intelligence
(AI) as much as possible. At the very least, we have the responsibility to
provide precise definitions of our methods and models and explain how
they differ from the heavily over-hyped Large Language Models and other
Generative AL This obviously concerns publications and, perhaps more
importantly, the communication with collaboration partners and the me-
dia. In the talk, a brief discussion of the most important shortcomings and
risks associated with these currently very popular tools is provided. Given
the current, very one-sided perception and limited “understanding” of Al
in the public and in the media, it is essential to clearly distance ourselves
and to avoid the term Al as much as possible. In view of the imminent
collapse of the GenAI bubble it is expected that the disillusionment will
hit hard. Eventually, it will turn against all forms of machine learning and
data analysis as well. The community should be prepared for the worst.

Unfortunately, the public perception of Artificial Intelligence is dominated by
the naive identification of this longstanding, very broad field of research with
the currently heavily over-hyped generative AI In my opinion, it is too late to
correct this counterproductive, purposefully created and maintained misconcep-
tion. Hence my plea to drop the term after all.

Large Language Models (LLM) and other generative systems do what they
are designed too, often displaying stunning performance. Without a doubt,
there are some (few) reasonable use cases for LLM or text-to-image gener-
ators. They generate eloquent texts, beautiful images or impressive videos.
However, big tech companies, uncritical media, and an ever-growing army of
self-proclaimed experts keep promoting the believe that generative AI provides
universal tools with unlimited abilities. Exaggerated praise predicts billion-
dollar-markets, overwhelming fears range from the loss of countless jobs to the
end of humanity. Al systems are sold as being just one step away from achiev-
ing artificial general intelligence (AGI), whatever that means precisely. It is
claimed that they truly comprehend texts, really analyse problems and are able

*Title suggested by ChatGPT
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The elephant in the room. Image generated by OpenArtSDXL, using the
prompt “A photorealistic image of a totally empty room without any elephant.
In particular, there should be no pink elephant.”

to reason [1]. Overstated claims of LLMs passing the Turing test [2] or achiev-
ing high scores in academic exams are frequently based on shady evaluation
methods and generally obscured by the intransparent training.

However, slowly but surely, people begin to realize, for instance, that even
the largest language models are what it says on the tin: language models. They
put together phrases, imitate or blatantly reproduce and remix pieces of text
from their training data. So-called hallucinations (a humanising misnomer) in
text, image or video generation may be reduced or mildened by labor-intensive
fixes or by resorting to the dubious art of prompt engineering. But the basic
problem remains: factually wrong texts, implausible images, and physically
impossible videos are intrinsic features of these systems, not bugs that will go
away with the next version [3]. This renders generative AI an extremely risky
technique that is not suitable for critical applications [4].

The many ethical issues of generative AI begin to be recognized as well: their
enormous waste of resources [5], the exploitation of cheap labor worldwide in
order to correct bugs [6], the unauthorized misuse of copyrighted materials [7],
the abusive collection of user data [8], and the uncritical amplification of biases
in the training data [9]. Last not least, there is a growing awareness and fear of
possible manipulations by authoritarian regimes or the big tech companies that
release and control these systems [10].
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As an obvious consequence, we should be very hesitant - to put it mildly -
to use genAlI in any scientific or educational context. Moreover, as a researcher
with main interests in methods, models and serious applications of old school
machine learning, I appeal to my colleagues: Stop using the term Artificial In-
telligence, AI as much as you can. At the very least, be very transparent and
specific about its precise intended meaning in your publications, press releases
or when communicating with collaborators. When the genAI bubble bursts —
and it will — the media and the public mood will turn against everything labelled
Al Do not fall for the hype, do not fuel it any further, and refrain from trying
to take advantage of it. It will backfire.

Example links

[1] https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf

[2] https://garymarcus.substack.com/p/ai-has-sort-of-passed-the-turing

[3] https://www.computerworld.com/video/2099753 /why-ai-hallucinations-are-here-to-
stay.html

[4] https://www.monettdiaz.com/, https//garymarcus.substack.com

[5] https://news.mit.edu/2025/explained-generative-ai-environmental-impact-0117

[6] https://www.theguardian.com/technology /2025 /sep/11/google-gemini-ai-training-
humans

[7] https://sites.usc.edu/iptls/2025/02/04/ai-copyright-and-the-law-the-ongoing-battle-
over-intellectual-property-rights/

[8] https://www.sciencenewstoday.org/the-dark-side-of-ai-cybersecurity-threats-and-privacy-
concerns

[9] https://studyfinds.org/ai-systems-amplify-human-bias/

[10] https://cointelegraph.com/news/elon-musk-grok-ai-rewrite-the-entire-corpus-human-
knowledge

Related opinion piece by Charlotte Vlek, University of Groningen:
https://www.rug.nl/fse/news/digital-society /the-genai-bubble-will-burst-but-don-
t-give-up-on-ai-altogether
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